Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1294.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) | |
| bnj1294.2 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | ||
| Assertion | bnj1294 | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1294.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) | |
| 2 | bnj1294.2 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) | |
| 4 | sp | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) | |
| 5 | 4 | impcom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) → 𝜓 ) |
| 6 | 3 5 | sylan2b | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → 𝜓 ) |
| 7 | 2 1 6 | syl2anc | ⊢ ( 𝜑 → 𝜓 ) |