Metamath Proof Explorer


Theorem bnj1294

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1294.1 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
bnj1294.2 ( 𝜑𝑥𝐴 )
Assertion bnj1294 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 bnj1294.1 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
2 bnj1294.2 ( 𝜑𝑥𝐴 )
3 df-ral ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐴𝜓 ) )
4 sp ( ∀ 𝑥 ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜓 ) )
5 4 impcom ( ( 𝑥𝐴 ∧ ∀ 𝑥 ( 𝑥𝐴𝜓 ) ) → 𝜓 )
6 3 5 sylan2b ( ( 𝑥𝐴 ∧ ∀ 𝑥𝐴 𝜓 ) → 𝜓 )
7 2 1 6 syl2anc ( 𝜑𝜓 )