Metamath Proof Explorer


Theorem bnj1309

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1309.1 B=d|dAxdpredxARd
Assertion bnj1309 wBxwB

Proof

Step Hyp Ref Expression
1 bnj1309.1 B=d|dAxdpredxARd
2 hbra1 xdpredxARdxxdpredxARd
3 2 bnj1352 dAxdpredxARdxdAxdpredxARd
4 3 hbab wd|dAxdpredxARdxwd|dAxdpredxARd
5 1 4 hbxfreq wBxwB