Metamath Proof Explorer


Theorem bnj1383

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1383.1 φfAFunf
bnj1383.2 D=domfdomg
bnj1383.3 ψφfAgAfD=gD
Assertion bnj1383 ψFunA

Proof

Step Hyp Ref Expression
1 bnj1383.1 φfAFunf
2 bnj1383.2 D=domfdomg
3 bnj1383.3 ψφfAgAfD=gD
4 biid ψxyAxzAψxyAxzA
5 biid ψxyAxzAfAxyfψxyAxzAfAxyf
6 biid ψxyAxzAfAxyfgAxzgψxyAxzAfAxyfgAxzg
7 1 2 3 4 5 6 bnj1379 ψFunA