Metamath Proof Explorer


Theorem bnj1502

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1502.1 φFunF
bnj1502.2 φGF
bnj1502.3 φAdomG
Assertion bnj1502 φFA=GA

Proof

Step Hyp Ref Expression
1 bnj1502.1 φFunF
2 bnj1502.2 φGF
3 bnj1502.3 φAdomG
4 funssfv FunFGFAdomGFA=GA
5 1 2 3 4 syl3anc φFA=GA