Metamath Proof Explorer


Theorem bnj258

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj258 φψχθφψθχ

Proof

Step Hyp Ref Expression
1 bnj257 φψχθφψθχ
2 df-bnj17 φψθχφψθχ
3 1 2 bitri φψχθφψθχ