Metamath Proof Explorer


Theorem bnj432

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj432 φ ψ χ θ χ θ φ ψ

Proof

Step Hyp Ref Expression
1 bnj422 φ ψ χ θ χ θ φ ψ
2 bnj256 χ θ φ ψ χ θ φ ψ
3 1 2 bitri φ ψ χ θ χ θ φ ψ