Metamath Proof Explorer


Theorem bnj538

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Hypothesis bnj538.1 A V
Assertion bnj538 [˙A / y]˙ x B φ x B [˙A / y]˙ φ

Proof

Step Hyp Ref Expression
1 bnj538.1 A V
2 sbcralg A V [˙A / y]˙ x B φ x B [˙A / y]˙ φ
3 1 2 ax-mp [˙A / y]˙ x B φ x B [˙A / y]˙ φ