Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj538.1 | |- A e. _V |
|
| Assertion | bnj538 | |- ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj538.1 | |- A e. _V |
|
| 2 | sbcralg | |- ( A e. _V -> ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph ) ) |
|
| 3 | 1 2 | ax-mp | |- ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph ) |