| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj529.1 |
|- D = ( _om \ { (/) } ) |
| 2 |
|
eldifsn |
|- ( M e. ( _om \ { (/) } ) <-> ( M e. _om /\ M =/= (/) ) ) |
| 3 |
2
|
biimpi |
|- ( M e. ( _om \ { (/) } ) -> ( M e. _om /\ M =/= (/) ) ) |
| 4 |
3 1
|
eleq2s |
|- ( M e. D -> ( M e. _om /\ M =/= (/) ) ) |
| 5 |
|
nnord |
|- ( M e. _om -> Ord M ) |
| 6 |
5
|
anim1i |
|- ( ( M e. _om /\ M =/= (/) ) -> ( Ord M /\ M =/= (/) ) ) |
| 7 |
|
ord0eln0 |
|- ( Ord M -> ( (/) e. M <-> M =/= (/) ) ) |
| 8 |
7
|
biimpar |
|- ( ( Ord M /\ M =/= (/) ) -> (/) e. M ) |
| 9 |
4 6 8
|
3syl |
|- ( M e. D -> (/) e. M ) |