Metamath Proof Explorer


Theorem bnj529

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj529.1 𝐷 = ( ω ∖ { ∅ } )
Assertion bnj529 ( 𝑀𝐷 → ∅ ∈ 𝑀 )

Proof

Step Hyp Ref Expression
1 bnj529.1 𝐷 = ( ω ∖ { ∅ } )
2 eldifsn ( 𝑀 ∈ ( ω ∖ { ∅ } ) ↔ ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) )
3 2 biimpi ( 𝑀 ∈ ( ω ∖ { ∅ } ) → ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) )
4 3 1 eleq2s ( 𝑀𝐷 → ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) )
5 nnord ( 𝑀 ∈ ω → Ord 𝑀 )
6 5 anim1i ( ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) → ( Ord 𝑀𝑀 ≠ ∅ ) )
7 ord0eln0 ( Ord 𝑀 → ( ∅ ∈ 𝑀𝑀 ≠ ∅ ) )
8 7 biimpar ( ( Ord 𝑀𝑀 ≠ ∅ ) → ∅ ∈ 𝑀 )
9 4 6 8 3syl ( 𝑀𝐷 → ∅ ∈ 𝑀 )