Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj529.1 | ⊢ 𝐷 = ( ω ∖ { ∅ } ) | |
Assertion | bnj529 | ⊢ ( 𝑀 ∈ 𝐷 → ∅ ∈ 𝑀 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj529.1 | ⊢ 𝐷 = ( ω ∖ { ∅ } ) | |
2 | eldifsn | ⊢ ( 𝑀 ∈ ( ω ∖ { ∅ } ) ↔ ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) ) | |
3 | 2 | biimpi | ⊢ ( 𝑀 ∈ ( ω ∖ { ∅ } ) → ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) ) |
4 | 3 1 | eleq2s | ⊢ ( 𝑀 ∈ 𝐷 → ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) ) |
5 | nnord | ⊢ ( 𝑀 ∈ ω → Ord 𝑀 ) | |
6 | 5 | anim1i | ⊢ ( ( 𝑀 ∈ ω ∧ 𝑀 ≠ ∅ ) → ( Ord 𝑀 ∧ 𝑀 ≠ ∅ ) ) |
7 | ord0eln0 | ⊢ ( Ord 𝑀 → ( ∅ ∈ 𝑀 ↔ 𝑀 ≠ ∅ ) ) | |
8 | 7 | biimpar | ⊢ ( ( Ord 𝑀 ∧ 𝑀 ≠ ∅ ) → ∅ ∈ 𝑀 ) |
9 | 4 6 8 | 3syl | ⊢ ( 𝑀 ∈ 𝐷 → ∅ ∈ 𝑀 ) |