Metamath Proof Explorer


Theorem bnj589

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj589.1 ψ i ω suc i n f suc i = y f i pred y A R
Assertion bnj589 ψ k ω suc k n f suc k = y f k pred y A R

Proof

Step Hyp Ref Expression
1 bnj589.1 ψ i ω suc i n f suc i = y f i pred y A R
2 1 bnj222 ψ k ω suc k n f suc k = y f k pred y A R