Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj852.1 | |
|
bnj852.2 | |
||
bnj852.3 | |
||
Assertion | bnj852 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj852.1 | |
|
2 | bnj852.2 | |
|
3 | bnj852.3 | |
|
4 | elisset | |
|
5 | 4 | adantl | |
6 | 5 | ancri | |
7 | 6 | bnj534 | |
8 | eleq1 | |
|
9 | 8 | anbi2d | |
10 | 9 | biimpar | |
11 | biid | |
|
12 | omex | |
|
13 | difexg | |
|
14 | 12 13 | ax-mp | |
15 | 3 14 | eqeltri | |
16 | zfregfr | |
|
17 | 11 15 16 | bnj157 | |
18 | biid | |
|
19 | biid | |
|
20 | 18 2 3 19 11 | bnj153 | |
21 | 18 2 3 19 11 | bnj601 | |
22 | 20 21 | pm2.61ine | |
23 | 22 | ex | |
24 | 17 23 | mprg | |
25 | r19.21v | |
|
26 | 24 25 | mpbi | |
27 | 10 26 | syl | |
28 | bnj602 | |
|
29 | 28 | eqeq2d | |
30 | 29 1 | bitr4di | |
31 | 30 | 3anbi2d | |
32 | 31 | eubidv | |
33 | 32 | ralbidv | |
34 | 33 | adantr | |
35 | 27 34 | mpbid | |
36 | 7 35 | bnj593 | |
37 | 36 | bnj937 | |