Metamath Proof Explorer


Theorem bnj852

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj852.1 φf=predXAR
bnj852.2 ψiωsucinfsuci=yfipredyAR
bnj852.3 D=ω
Assertion bnj852 RFrSeAXAnD∃!ffFnnφψ

Proof

Step Hyp Ref Expression
1 bnj852.1 φf=predXAR
2 bnj852.2 ψiωsucinfsuci=yfipredyAR
3 bnj852.3 D=ω
4 elisset XAxx=X
5 4 adantl RFrSeAXAxx=X
6 5 ancri RFrSeAXAxx=XRFrSeAXA
7 6 bnj534 RFrSeAXAxx=XRFrSeAXA
8 eleq1 x=XxAXA
9 8 anbi2d x=XRFrSeAxARFrSeAXA
10 9 biimpar x=XRFrSeAXARFrSeAxA
11 biid zDzEn[˙z/n]˙RFrSeAxA∃!ffFnnf=predxARψzDzEn[˙z/n]˙RFrSeAxA∃!ffFnnf=predxARψ
12 omex ωV
13 difexg ωVωV
14 12 13 ax-mp ωV
15 3 14 eqeltri DV
16 zfregfr EFrD
17 11 15 16 bnj157 nDzDzEn[˙z/n]˙RFrSeAxA∃!ffFnnf=predxARψRFrSeAxA∃!ffFnnf=predxARψnDRFrSeAxA∃!ffFnnf=predxARψ
18 biid f=predxARf=predxAR
19 biid RFrSeAxA∃!ffFnnf=predxARψRFrSeAxA∃!ffFnnf=predxARψ
20 18 2 3 19 11 bnj153 n=1𝑜nDzDzEn[˙z/n]˙RFrSeAxA∃!ffFnnf=predxARψRFrSeAxA∃!ffFnnf=predxARψ
21 18 2 3 19 11 bnj601 n1𝑜nDzDzEn[˙z/n]˙RFrSeAxA∃!ffFnnf=predxARψRFrSeAxA∃!ffFnnf=predxARψ
22 20 21 pm2.61ine nDzDzEn[˙z/n]˙RFrSeAxA∃!ffFnnf=predxARψRFrSeAxA∃!ffFnnf=predxARψ
23 22 ex nDzDzEn[˙z/n]˙RFrSeAxA∃!ffFnnf=predxARψRFrSeAxA∃!ffFnnf=predxARψ
24 17 23 mprg nDRFrSeAxA∃!ffFnnf=predxARψ
25 r19.21v nDRFrSeAxA∃!ffFnnf=predxARψRFrSeAxAnD∃!ffFnnf=predxARψ
26 24 25 mpbi RFrSeAxAnD∃!ffFnnf=predxARψ
27 10 26 syl x=XRFrSeAXAnD∃!ffFnnf=predxARψ
28 bnj602 x=XpredxAR=predXAR
29 28 eqeq2d x=Xf=predxARf=predXAR
30 29 1 bitr4di x=Xf=predxARφ
31 30 3anbi2d x=XfFnnf=predxARψfFnnφψ
32 31 eubidv x=X∃!ffFnnf=predxARψ∃!ffFnnφψ
33 32 ralbidv x=XnD∃!ffFnnf=predxARψnD∃!ffFnnφψ
34 33 adantr x=XRFrSeAXAnD∃!ffFnnf=predxARψnD∃!ffFnnφψ
35 27 34 mpbid x=XRFrSeAXAnD∃!ffFnnφψ
36 7 35 bnj593 RFrSeAXAxnD∃!ffFnnφψ
37 36 bnj937 RFrSeAXAnD∃!ffFnnφψ