Metamath Proof Explorer


Theorem bnj98

Description: Technical lemma for bnj150 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj98 i ω suc i 1 𝑜 F suc i = y F i pred y A R

Proof

Step Hyp Ref Expression
1 vex i V
2 1 sucid i suc i
3 2 n0ii ¬ suc i =
4 df-suc suc i = i i
5 df-un i i = x | x i x i
6 4 5 eqtri suc i = x | x i x i
7 df1o2 1 𝑜 =
8 6 7 eleq12i suc i 1 𝑜 x | x i x i
9 elsni x | x i x i x | x i x i =
10 8 9 sylbi suc i 1 𝑜 x | x i x i =
11 6 10 eqtrid suc i 1 𝑜 suc i =
12 3 11 mto ¬ suc i 1 𝑜
13 12 pm2.21i suc i 1 𝑜 F suc i = y F i pred y A R
14 13 rgenw i ω suc i 1 𝑜 F suc i = y F i pred y A R