Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑖 ∈ V |
2 |
1
|
sucid |
⊢ 𝑖 ∈ suc 𝑖 |
3 |
2
|
n0ii |
⊢ ¬ suc 𝑖 = ∅ |
4 |
|
df-suc |
⊢ suc 𝑖 = ( 𝑖 ∪ { 𝑖 } ) |
5 |
|
df-un |
⊢ ( 𝑖 ∪ { 𝑖 } ) = { 𝑥 ∣ ( 𝑥 ∈ 𝑖 ∨ 𝑥 ∈ { 𝑖 } ) } |
6 |
4 5
|
eqtri |
⊢ suc 𝑖 = { 𝑥 ∣ ( 𝑥 ∈ 𝑖 ∨ 𝑥 ∈ { 𝑖 } ) } |
7 |
|
df1o2 |
⊢ 1o = { ∅ } |
8 |
6 7
|
eleq12i |
⊢ ( suc 𝑖 ∈ 1o ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝑖 ∨ 𝑥 ∈ { 𝑖 } ) } ∈ { ∅ } ) |
9 |
|
elsni |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑖 ∨ 𝑥 ∈ { 𝑖 } ) } ∈ { ∅ } → { 𝑥 ∣ ( 𝑥 ∈ 𝑖 ∨ 𝑥 ∈ { 𝑖 } ) } = ∅ ) |
10 |
8 9
|
sylbi |
⊢ ( suc 𝑖 ∈ 1o → { 𝑥 ∣ ( 𝑥 ∈ 𝑖 ∨ 𝑥 ∈ { 𝑖 } ) } = ∅ ) |
11 |
6 10
|
syl5eq |
⊢ ( suc 𝑖 ∈ 1o → suc 𝑖 = ∅ ) |
12 |
3 11
|
mto |
⊢ ¬ suc 𝑖 ∈ 1o |
13 |
12
|
pm2.21i |
⊢ ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
14 |
13
|
rgenw |
⊢ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |