| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj150.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj150.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj150.3 |
⊢ ( 𝜁 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 4 |
|
bnj150.4 |
⊢ ( 𝜑′ ↔ [ 1o / 𝑛 ] 𝜑 ) |
| 5 |
|
bnj150.5 |
⊢ ( 𝜓′ ↔ [ 1o / 𝑛 ] 𝜓 ) |
| 6 |
|
bnj150.6 |
⊢ ( 𝜃0 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
| 7 |
|
bnj150.7 |
⊢ ( 𝜁′ ↔ [ 1o / 𝑛 ] 𝜁 ) |
| 8 |
|
bnj150.8 |
⊢ 𝐹 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } |
| 9 |
|
bnj150.9 |
⊢ ( 𝜑″ ↔ [ 𝐹 / 𝑓 ] 𝜑′ ) |
| 10 |
|
bnj150.10 |
⊢ ( 𝜓″ ↔ [ 𝐹 / 𝑓 ] 𝜓′ ) |
| 11 |
|
bnj150.11 |
⊢ ( 𝜁″ ↔ [ 𝐹 / 𝑓 ] 𝜁′ ) |
| 12 |
8
|
bnj95 |
⊢ 𝐹 ∈ V |
| 13 |
|
sbceq1a |
⊢ ( 𝑓 = 𝐹 → ( 𝜁′ ↔ [ 𝐹 / 𝑓 ] 𝜁′ ) ) |
| 14 |
13 11
|
bitr4di |
⊢ ( 𝑓 = 𝐹 → ( 𝜁′ ↔ 𝜁″ ) ) |
| 15 |
|
0ex |
⊢ ∅ ∈ V |
| 16 |
|
bnj93 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) |
| 17 |
|
funsng |
⊢ ( ( ∅ ∈ V ∧ pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) → Fun { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) |
| 18 |
15 16 17
|
sylancr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Fun { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) |
| 19 |
8
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ) |
| 20 |
18 19
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Fun 𝐹 ) |
| 21 |
8
|
bnj96 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → dom 𝐹 = 1o ) |
| 22 |
20 21
|
bnj1422 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 Fn 1o ) |
| 23 |
8
|
bnj97 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 24 |
1 4 9 8
|
bnj125 |
⊢ ( 𝜑″ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝜑″ ) |
| 26 |
22 25
|
jca |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 Fn 1o ∧ 𝜑″ ) ) |
| 27 |
|
bnj98 |
⊢ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 28 |
2 5 10 8
|
bnj126 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 29 |
27 28
|
mpbir |
⊢ 𝜓″ |
| 30 |
|
df-3an |
⊢ ( ( 𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″ ) ↔ ( ( 𝐹 Fn 1o ∧ 𝜑″ ) ∧ 𝜓″ ) ) |
| 31 |
26 29 30
|
sylanblrc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″ ) ) |
| 32 |
3 7 4 5
|
bnj121 |
⊢ ( 𝜁′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
| 33 |
8 9 10 11 32
|
bnj124 |
⊢ ( 𝜁″ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″ ) ) ) |
| 34 |
31 33
|
mpbir |
⊢ 𝜁″ |
| 35 |
12 14 34
|
ceqsexv2d |
⊢ ∃ 𝑓 𝜁′ |
| 36 |
|
19.37v |
⊢ ( ∃ 𝑓 ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
| 37 |
6 36
|
bitr4i |
⊢ ( 𝜃0 ↔ ∃ 𝑓 ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
| 38 |
37 32
|
bnj133 |
⊢ ( 𝜃0 ↔ ∃ 𝑓 𝜁′ ) |
| 39 |
35 38
|
mpbir |
⊢ 𝜃0 |