Metamath Proof Explorer


Theorem bnj125

Description: Technical lemma for bnj150 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj125.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj125.2 ( 𝜑′[ 1o / 𝑛 ] 𝜑 )
bnj125.3 ( 𝜑″[ 𝐹 / 𝑓 ] 𝜑′ )
bnj125.4 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
Assertion bnj125 ( 𝜑″ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj125.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj125.2 ( 𝜑′[ 1o / 𝑛 ] 𝜑 )
3 bnj125.3 ( 𝜑″[ 𝐹 / 𝑓 ] 𝜑′ )
4 bnj125.4 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
5 2 sbcbii ( [ 𝐹 / 𝑓 ] 𝜑′[ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 )
6 bnj105 1o ∈ V
7 1 6 bnj91 ( [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
8 7 sbcbii ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ 𝐹 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
9 4 bnj95 𝐹 ∈ V
10 fveq1 ( 𝑓 = 𝐹 → ( 𝑓 ‘ ∅ ) = ( 𝐹 ‘ ∅ ) )
11 10 eqeq1d ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
12 9 11 sbcie ( [ 𝐹 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
13 8 12 bitri ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
14 5 13 bitri ( [ 𝐹 / 𝑓 ] 𝜑′ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
15 3 14 bitri ( 𝜑″ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )