Metamath Proof Explorer


Theorem bnj97

Description: Technical lemma for bnj150 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj96.1 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
Assertion bnj97 ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj96.1 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
2 bnj93 ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V )
3 0ex ∅ ∈ V
4 3 bnj519 ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V → Fun { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } )
5 1 funeqi ( Fun 𝐹 ↔ Fun { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } )
6 4 5 sylibr ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V → Fun 𝐹 )
7 2 6 syl ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → Fun 𝐹 )
8 opex ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ ∈ V
9 8 snid ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ ∈ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
10 9 1 eleqtrri ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ ∈ 𝐹
11 funopfv ( Fun 𝐹 → ( ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ ∈ 𝐹 → ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
12 7 10 11 mpisyl ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )