| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj96.1 |
|- F = { <. (/) , _pred ( x , A , R ) >. } |
| 2 |
|
bnj93 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V ) |
| 3 |
|
0ex |
|- (/) e. _V |
| 4 |
3
|
bnj519 |
|- ( _pred ( x , A , R ) e. _V -> Fun { <. (/) , _pred ( x , A , R ) >. } ) |
| 5 |
1
|
funeqi |
|- ( Fun F <-> Fun { <. (/) , _pred ( x , A , R ) >. } ) |
| 6 |
4 5
|
sylibr |
|- ( _pred ( x , A , R ) e. _V -> Fun F ) |
| 7 |
2 6
|
syl |
|- ( ( R _FrSe A /\ x e. A ) -> Fun F ) |
| 8 |
|
opex |
|- <. (/) , _pred ( x , A , R ) >. e. _V |
| 9 |
8
|
snid |
|- <. (/) , _pred ( x , A , R ) >. e. { <. (/) , _pred ( x , A , R ) >. } |
| 10 |
9 1
|
eleqtrri |
|- <. (/) , _pred ( x , A , R ) >. e. F |
| 11 |
|
funopfv |
|- ( Fun F -> ( <. (/) , _pred ( x , A , R ) >. e. F -> ( F ` (/) ) = _pred ( x , A , R ) ) ) |
| 12 |
7 10 11
|
mpisyl |
|- ( ( R _FrSe A /\ x e. A ) -> ( F ` (/) ) = _pred ( x , A , R ) ) |