Step |
Hyp |
Ref |
Expression |
1 |
|
bnj124.1 |
⊢ 𝐹 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } |
2 |
|
bnj124.2 |
⊢ ( 𝜑″ ↔ [ 𝐹 / 𝑓 ] 𝜑′ ) |
3 |
|
bnj124.3 |
⊢ ( 𝜓″ ↔ [ 𝐹 / 𝑓 ] 𝜓′ ) |
4 |
|
bnj124.4 |
⊢ ( 𝜁″ ↔ [ 𝐹 / 𝑓 ] 𝜁′ ) |
5 |
|
bnj124.5 |
⊢ ( 𝜁′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
6 |
5
|
sbcbii |
⊢ ( [ 𝐹 / 𝑓 ] 𝜁′ ↔ [ 𝐹 / 𝑓 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
7 |
1
|
bnj95 |
⊢ 𝐹 ∈ V |
8 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) |
9 |
8
|
sbc19.21g |
⊢ ( 𝐹 ∈ V → ( [ 𝐹 / 𝑓 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝐹 / 𝑓 ] ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) ) |
10 |
7 9
|
ax-mp |
⊢ ( [ 𝐹 / 𝑓 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝐹 / 𝑓 ] ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
11 |
|
fneq1 |
⊢ ( 𝑓 = 𝑧 → ( 𝑓 Fn 1o ↔ 𝑧 Fn 1o ) ) |
12 |
|
fneq1 |
⊢ ( 𝑧 = 𝐹 → ( 𝑧 Fn 1o ↔ 𝐹 Fn 1o ) ) |
13 |
11 12
|
sbcie2g |
⊢ ( 𝐹 ∈ V → ( [ 𝐹 / 𝑓 ] 𝑓 Fn 1o ↔ 𝐹 Fn 1o ) ) |
14 |
7 13
|
ax-mp |
⊢ ( [ 𝐹 / 𝑓 ] 𝑓 Fn 1o ↔ 𝐹 Fn 1o ) |
15 |
14
|
bicomi |
⊢ ( 𝐹 Fn 1o ↔ [ 𝐹 / 𝑓 ] 𝑓 Fn 1o ) |
16 |
15 2 3 7
|
bnj206 |
⊢ ( [ 𝐹 / 𝑓 ] ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ↔ ( 𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″ ) ) |
17 |
16
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝐹 / 𝑓 ] ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″ ) ) ) |
18 |
6 10 17
|
3bitri |
⊢ ( [ 𝐹 / 𝑓 ] 𝜁′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″ ) ) ) |
19 |
4 18
|
bitri |
⊢ ( 𝜁″ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″ ) ) ) |