Step |
Hyp |
Ref |
Expression |
1 |
|
bnj124.1 |
|- F = { <. (/) , _pred ( x , A , R ) >. } |
2 |
|
bnj124.2 |
|- ( ph" <-> [. F / f ]. ph' ) |
3 |
|
bnj124.3 |
|- ( ps" <-> [. F / f ]. ps' ) |
4 |
|
bnj124.4 |
|- ( ze" <-> [. F / f ]. ze' ) |
5 |
|
bnj124.5 |
|- ( ze' <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) ) |
6 |
5
|
sbcbii |
|- ( [. F / f ]. ze' <-> [. F / f ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) ) |
7 |
1
|
bnj95 |
|- F e. _V |
8 |
|
nfv |
|- F/ f ( R _FrSe A /\ x e. A ) |
9 |
8
|
sbc19.21g |
|- ( F e. _V -> ( [. F / f ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) <-> ( ( R _FrSe A /\ x e. A ) -> [. F / f ]. ( f Fn 1o /\ ph' /\ ps' ) ) ) ) |
10 |
7 9
|
ax-mp |
|- ( [. F / f ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) <-> ( ( R _FrSe A /\ x e. A ) -> [. F / f ]. ( f Fn 1o /\ ph' /\ ps' ) ) ) |
11 |
|
fneq1 |
|- ( f = z -> ( f Fn 1o <-> z Fn 1o ) ) |
12 |
|
fneq1 |
|- ( z = F -> ( z Fn 1o <-> F Fn 1o ) ) |
13 |
11 12
|
sbcie2g |
|- ( F e. _V -> ( [. F / f ]. f Fn 1o <-> F Fn 1o ) ) |
14 |
7 13
|
ax-mp |
|- ( [. F / f ]. f Fn 1o <-> F Fn 1o ) |
15 |
14
|
bicomi |
|- ( F Fn 1o <-> [. F / f ]. f Fn 1o ) |
16 |
15 2 3 7
|
bnj206 |
|- ( [. F / f ]. ( f Fn 1o /\ ph' /\ ps' ) <-> ( F Fn 1o /\ ph" /\ ps" ) ) |
17 |
16
|
imbi2i |
|- ( ( ( R _FrSe A /\ x e. A ) -> [. F / f ]. ( f Fn 1o /\ ph' /\ ps' ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( F Fn 1o /\ ph" /\ ps" ) ) ) |
18 |
6 10 17
|
3bitri |
|- ( [. F / f ]. ze' <-> ( ( R _FrSe A /\ x e. A ) -> ( F Fn 1o /\ ph" /\ ps" ) ) ) |
19 |
4 18
|
bitri |
|- ( ze" <-> ( ( R _FrSe A /\ x e. A ) -> ( F Fn 1o /\ ph" /\ ps" ) ) ) |