Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj206.1 | ⊢ ( 𝜑′ ↔ [ 𝑀 / 𝑛 ] 𝜑 ) | |
| bnj206.2 | ⊢ ( 𝜓′ ↔ [ 𝑀 / 𝑛 ] 𝜓 ) | ||
| bnj206.3 | ⊢ ( 𝜒′ ↔ [ 𝑀 / 𝑛 ] 𝜒 ) | ||
| bnj206.4 | ⊢ 𝑀 ∈ V | ||
| Assertion | bnj206 | ⊢ ( [ 𝑀 / 𝑛 ] ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑′ ∧ 𝜓′ ∧ 𝜒′ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj206.1 | ⊢ ( 𝜑′ ↔ [ 𝑀 / 𝑛 ] 𝜑 ) | |
| 2 | bnj206.2 | ⊢ ( 𝜓′ ↔ [ 𝑀 / 𝑛 ] 𝜓 ) | |
| 3 | bnj206.3 | ⊢ ( 𝜒′ ↔ [ 𝑀 / 𝑛 ] 𝜒 ) | |
| 4 | bnj206.4 | ⊢ 𝑀 ∈ V | |
| 5 | sbc3an | ⊢ ( [ 𝑀 / 𝑛 ] ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( [ 𝑀 / 𝑛 ] 𝜑 ∧ [ 𝑀 / 𝑛 ] 𝜓 ∧ [ 𝑀 / 𝑛 ] 𝜒 ) ) | |
| 6 | 1 | bicomi | ⊢ ( [ 𝑀 / 𝑛 ] 𝜑 ↔ 𝜑′ ) |
| 7 | 2 | bicomi | ⊢ ( [ 𝑀 / 𝑛 ] 𝜓 ↔ 𝜓′ ) |
| 8 | 3 | bicomi | ⊢ ( [ 𝑀 / 𝑛 ] 𝜒 ↔ 𝜒′ ) |
| 9 | 6 7 8 | 3anbi123i | ⊢ ( ( [ 𝑀 / 𝑛 ] 𝜑 ∧ [ 𝑀 / 𝑛 ] 𝜓 ∧ [ 𝑀 / 𝑛 ] 𝜒 ) ↔ ( 𝜑′ ∧ 𝜓′ ∧ 𝜒′ ) ) |
| 10 | 5 9 | bitri | ⊢ ( [ 𝑀 / 𝑛 ] ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑′ ∧ 𝜓′ ∧ 𝜒′ ) ) |