Step |
Hyp |
Ref |
Expression |
1 |
|
bnj106.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
bnj106.2 |
⊢ 𝐹 ∈ V |
3 |
|
bnj105 |
⊢ 1o ∈ V |
4 |
1 3
|
bnj92 |
⊢ ( [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
5 |
4
|
sbcbii |
⊢ ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ [ 𝐹 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
6 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝐹 ‘ suc 𝑖 ) ) |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
8 |
7
|
bnj1113 |
⊢ ( 𝑓 = 𝐹 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
12 |
2 11
|
sbcie |
⊢ ( [ 𝐹 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
13 |
5 12
|
bitri |
⊢ ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |