Metamath Proof Explorer


Theorem brafn

Description: The bra function is a functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion brafn AbraA:

Proof

Step Hyp Ref Expression
1 brafval AbraA=xxihA
2 hicl xAxihA
3 2 ancoms AxxihA
4 1 3 fmpt3d AbraA: