Metamath Proof Explorer


Theorem breq2dd

Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses breq2dd.1 φ A = B
breq2dd.2 φ C R A
Assertion breq2dd φ C R B

Proof

Step Hyp Ref Expression
1 breq2dd.1 φ A = B
2 breq2dd.2 φ C R A
3 1 breq2d φ C R A C R B
4 2 3 mpbid φ C R B