Metamath Proof Explorer


Theorem brlb

Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018)

Ref Expression
Hypotheses brub.1 S V
brub.2 A V
Assertion brlb S LB R A x S A R x

Proof

Step Hyp Ref Expression
1 brub.1 S V
2 brub.2 A V
3 df-lb LB R = UB R -1
4 3 breqi S LB R A S UB R -1 A
5 1 2 brub S UB R -1 A x S x R -1 A
6 vex x V
7 6 2 brcnv x R -1 A A R x
8 7 ralbii x S x R -1 A x S A R x
9 4 5 8 3bitri S LB R A x S A R x