Metamath Proof Explorer


Theorem brlb

Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018)

Ref Expression
Hypotheses brub.1 𝑆 ∈ V
brub.2 𝐴 ∈ V
Assertion brlb ( 𝑆 LB 𝑅 𝐴 ↔ ∀ 𝑥𝑆 𝐴 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 brub.1 𝑆 ∈ V
2 brub.2 𝐴 ∈ V
3 df-lb LB 𝑅 = UB 𝑅
4 3 breqi ( 𝑆 LB 𝑅 𝐴𝑆 UB 𝑅 𝐴 )
5 1 2 brub ( 𝑆 UB 𝑅 𝐴 ↔ ∀ 𝑥𝑆 𝑥 𝑅 𝐴 )
6 vex 𝑥 ∈ V
7 6 2 brcnv ( 𝑥 𝑅 𝐴𝐴 𝑅 𝑥 )
8 7 ralbii ( ∀ 𝑥𝑆 𝑥 𝑅 𝐴 ↔ ∀ 𝑥𝑆 𝐴 𝑅 𝑥 )
9 4 5 8 3bitri ( 𝑆 LB 𝑅 𝐴 ↔ ∀ 𝑥𝑆 𝐴 𝑅 𝑥 )