Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brub.1 | ⊢ 𝑆 ∈ V | |
brub.2 | ⊢ 𝐴 ∈ V | ||
Assertion | brlb | ⊢ ( 𝑆 LB 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝐴 𝑅 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brub.1 | ⊢ 𝑆 ∈ V | |
2 | brub.2 | ⊢ 𝐴 ∈ V | |
3 | df-lb | ⊢ LB 𝑅 = UB ◡ 𝑅 | |
4 | 3 | breqi | ⊢ ( 𝑆 LB 𝑅 𝐴 ↔ 𝑆 UB ◡ 𝑅 𝐴 ) |
5 | 1 2 | brub | ⊢ ( 𝑆 UB ◡ 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ◡ 𝑅 𝐴 ) |
6 | vex | ⊢ 𝑥 ∈ V | |
7 | 6 2 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝑥 ) |
8 | 7 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝑥 ◡ 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝐴 𝑅 𝑥 ) |
9 | 4 5 8 | 3bitri | ⊢ ( 𝑆 LB 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝐴 𝑅 𝑥 ) |