Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brub.1 | ⊢ 𝑆 ∈ V | |
| brub.2 | ⊢ 𝐴 ∈ V | ||
| Assertion | brlb | ⊢ ( 𝑆 LB 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝐴 𝑅 𝑥 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brub.1 | ⊢ 𝑆 ∈ V | |
| 2 | brub.2 | ⊢ 𝐴 ∈ V | |
| 3 | df-lb | ⊢ LB 𝑅 = UB ◡ 𝑅 | |
| 4 | 3 | breqi | ⊢ ( 𝑆 LB 𝑅 𝐴 ↔ 𝑆 UB ◡ 𝑅 𝐴 ) | 
| 5 | 1 2 | brub | ⊢ ( 𝑆 UB ◡ 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ◡ 𝑅 𝐴 ) | 
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 2 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝑥 ) | 
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝑥 ◡ 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝐴 𝑅 𝑥 ) | 
| 9 | 4 5 8 | 3bitri | ⊢ ( 𝑆 LB 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝐴 𝑅 𝑥 ) |