Metamath Proof Explorer


Theorem brlb

Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018)

Ref Expression
Hypotheses brub.1 SV
brub.2 AV
Assertion brlb SLBRAxSARx

Proof

Step Hyp Ref Expression
1 brub.1 SV
2 brub.2 AV
3 df-lb LBR=UBR-1
4 3 breqi SLBRASUBR-1A
5 1 2 brub SUBR-1AxSxR-1A
6 vex xV
7 6 2 brcnv xR-1AARx
8 7 ralbii xSxR-1AxSARx
9 4 5 8 3bitri SLBRAxSARx