Metamath Proof Explorer


Theorem btwncolg1

Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019)

Ref Expression
Hypotheses tglngval.p P=BaseG
tglngval.l L=Line𝒢G
tglngval.i I=ItvG
tglngval.g φG𝒢Tarski
tglngval.x φXP
tglngval.y φYP
tgcolg.z φZP
btwncolg1.z φZXIY
Assertion btwncolg1 φZXLYX=Y

Proof

Step Hyp Ref Expression
1 tglngval.p P=BaseG
2 tglngval.l L=Line𝒢G
3 tglngval.i I=ItvG
4 tglngval.g φG𝒢Tarski
5 tglngval.x φXP
6 tglngval.y φYP
7 tgcolg.z φZP
8 btwncolg1.z φZXIY
9 8 3mix1d φZXIYXZIYYXIZ
10 1 2 3 4 5 6 7 tgcolg φZXLYX=YZXIYXZIYYXIZ
11 9 10 mpbird φZXLYX=Y