Metamath Proof Explorer


Theorem caov31

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 AV
caov.2 BV
caov.3 CV
caov.com xFy=yFx
caov.ass xFyFz=xFyFz
Assertion caov31 AFBFC=CFBFA

Proof

Step Hyp Ref Expression
1 caov.1 AV
2 caov.2 BV
3 caov.3 CV
4 caov.com xFy=yFx
5 caov.ass xFyFz=xFyFz
6 1 3 2 5 caovass AFCFB=AFCFB
7 1 3 2 4 5 caov12 AFCFB=CFAFB
8 6 7 eqtri AFCFB=CFAFB
9 1 2 3 4 5 caov32 AFBFC=AFCFB
10 3 1 2 4 5 caov32 CFAFB=CFBFA
11 3 1 2 5 caovass CFAFB=CFAFB
12 10 11 eqtr3i CFBFA=CFAFB
13 8 9 12 3eqtr4i AFBFC=CFBFA