Metamath Proof Explorer


Theorem caovcomd

Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcomg.1 φxSySxFy=yFx
caovcomd.2 φAS
caovcomd.3 φBS
Assertion caovcomd φAFB=BFA

Proof

Step Hyp Ref Expression
1 caovcomg.1 φxSySxFy=yFx
2 caovcomd.2 φAS
3 caovcomd.3 φBS
4 id φφ
5 1 caovcomg φASBSAFB=BFA
6 4 2 3 5 syl12anc φAFB=BFA