Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Natural transformations and the functor category
catcofval
Next ⟩
Initial, terminal and zero objects of a category
Metamath Proof Explorer
Ascii
Unicode
Theorem
catcofval
Description:
Composition of the category structure.
(Contributed by
Zhi Wang
, 5-Nov-2025)
Ref
Expression
Hypotheses
catbas.c
⊢
C
=
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
catcofval.x
⊢
·
˙
∈
V
Assertion
catcofval
⊢
·
˙
=
comp
⁡
C
Proof
Step
Hyp
Ref
Expression
1
catbas.c
⊢
C
=
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
2
catcofval.x
⊢
·
˙
∈
V
3
catstr
⊢
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
Struct
1
15
4
1
3
eqbrtri
⊢
C
Struct
1
15
5
ccoid
⊢
comp
=
Slot
comp
⁡
ndx
6
snsstp3
⊢
comp
⁡
ndx
·
˙
⊆
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
7
6
1
sseqtrri
⊢
comp
⁡
ndx
·
˙
⊆
C
8
4
5
7
strfv
⊢
·
˙
∈
V
→
·
˙
=
comp
⁡
C
9
2
8
ax-mp
⊢
·
˙
=
comp
⁡
C