Metamath Proof Explorer


Theorem catcofval

Description: Composition of the category structure. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses catbas.c C = Base ndx B Hom ndx H comp ndx · ˙
catcofval.x · ˙ V
Assertion catcofval · ˙ = comp C

Proof

Step Hyp Ref Expression
1 catbas.c C = Base ndx B Hom ndx H comp ndx · ˙
2 catcofval.x · ˙ V
3 catstr Base ndx B Hom ndx H comp ndx · ˙ Struct 1 15
4 1 3 eqbrtri C Struct 1 15
5 ccoid comp = Slot comp ndx
6 snsstp3 comp ndx · ˙ Base ndx B Hom ndx H comp ndx · ˙
7 6 1 sseqtrri comp ndx · ˙ C
8 4 5 7 strfv · ˙ V · ˙ = comp C
9 2 8 ax-mp · ˙ = comp C