Metamath Proof Explorer


Theorem cbv2w

Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbv2w.1 xφ
cbv2w.2 yφ
cbv2w.3 φyψ
cbv2w.4 φxχ
cbv2w.5 φx=yψχ
Assertion cbv2w φxψyχ

Proof

Step Hyp Ref Expression
1 cbv2w.1 xφ
2 cbv2w.2 yφ
3 cbv2w.3 φyψ
4 cbv2w.4 φxχ
5 cbv2w.5 φx=yψχ
6 biimp ψχψχ
7 5 6 syl6 φx=yψχ
8 1 2 3 4 7 cbv1v φxψyχ
9 equcomi y=xx=y
10 biimpr ψχχψ
11 9 5 10 syl56 φy=xχψ
12 2 1 4 3 11 cbv1v φyχxψ
13 8 12 impbid φxψyχ