Metamath Proof Explorer


Theorem cbvaev

Description: Change bound variable in an equality with a disjoint variable condition. Instance of aev . (Contributed by NM, 22-Jul-2015) (Revised by BJ, 18-Jun-2019)

Ref Expression
Assertion cbvaev xx=yzz=y

Proof

Step Hyp Ref Expression
1 ax7 x=tx=yt=y
2 1 cbvalivw xx=ytt=y
3 ax7 t=zt=yz=y
4 3 cbvalivw tt=yzz=y
5 2 4 syl xx=yzz=y