Metamath Proof Explorer


Theorem cbvexd

Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvexdw if possible. (Contributed by NM, 2-Jan-2002) (Revised by Mario Carneiro, 6-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvald.1 yφ
cbvald.2 φyψ
cbvald.3 φx=yψχ
Assertion cbvexd φxψyχ

Proof

Step Hyp Ref Expression
1 cbvald.1 yφ
2 cbvald.2 φyψ
3 cbvald.3 φx=yψχ
4 2 nfnd φy¬ψ
5 notbi ψχ¬ψ¬χ
6 3 5 imbitrdi φx=y¬ψ¬χ
7 1 4 6 cbvald φx¬ψy¬χ
8 alnex x¬ψ¬xψ
9 alnex y¬χ¬yχ
10 7 8 9 3bitr3g φ¬xψ¬yχ
11 10 con4bid φxψyχ