Metamath Proof Explorer


Theorem cbviung

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 . See cbviun for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbviung.1 _yB
cbviung.2 _xC
cbviung.3 x=yB=C
Assertion cbviung xAB=yAC

Proof

Step Hyp Ref Expression
1 cbviung.1 _yB
2 cbviung.2 _xC
3 cbviung.3 x=yB=C
4 1 nfcri yzB
5 2 nfcri xzC
6 3 eleq2d x=yzBzC
7 4 5 6 cbvrex xAzByAzC
8 7 abbii z|xAzB=z|yAzC
9 df-iun xAB=z|xAzB
10 df-iun yAC=z|yAzC
11 8 9 10 3eqtr4i xAB=yAC