Metamath Proof Explorer


Theorem cbviunvw2

Description: Change bound variable and domain in indexed unions, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviunvw2.1 x = y C = D
cbviunvw2.2 x = y A = B
Assertion cbviunvw2 x A C = y B D

Proof

Step Hyp Ref Expression
1 cbviunvw2.1 x = y C = D
2 cbviunvw2.2 x = y A = B
3 1 eleq2d x = y t C t D
4 2 3 cbvrexvw2 x A t C y B t D
5 4 abbii t | x A t C = t | y B t D
6 df-iun x A C = t | x A t C
7 df-iun y B D = t | y B t D
8 5 6 7 3eqtr4i x A C = y B D