Metamath Proof Explorer


Theorem cbviinvw2

Description: Change bound variable and domain in an indexed intersection, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviinvw2.1 x = y C = D
cbviinvw2.2 x = y A = B
Assertion cbviinvw2 x A C = y B D

Proof

Step Hyp Ref Expression
1 cbviinvw2.1 x = y C = D
2 cbviinvw2.2 x = y A = B
3 1 eleq2d x = y t C t D
4 2 3 cbvralvw2 x A t C y B t D
5 4 abbii t | x A t C = t | y B t D
6 df-iin x A C = t | x A t C
7 df-iin y B D = t | y B t D
8 5 6 7 3eqtr4i x A C = y B D