Metamath Proof Explorer


Theorem cbviinvw2

Description: Change bound variable and domain in an indexed intersection, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviinvw2.1
|- ( x = y -> C = D )
cbviinvw2.2
|- ( x = y -> A = B )
Assertion cbviinvw2
|- |^|_ x e. A C = |^|_ y e. B D

Proof

Step Hyp Ref Expression
1 cbviinvw2.1
 |-  ( x = y -> C = D )
2 cbviinvw2.2
 |-  ( x = y -> A = B )
3 1 eleq2d
 |-  ( x = y -> ( t e. C <-> t e. D ) )
4 2 3 cbvralvw2
 |-  ( A. x e. A t e. C <-> A. y e. B t e. D )
5 4 abbii
 |-  { t | A. x e. A t e. C } = { t | A. y e. B t e. D }
6 df-iin
 |-  |^|_ x e. A C = { t | A. x e. A t e. C }
7 df-iin
 |-  |^|_ y e. B D = { t | A. y e. B t e. D }
8 5 6 7 3eqtr4i
 |-  |^|_ x e. A C = |^|_ y e. B D