Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmptvw2.1 |
|- ( x = y -> C = D ) |
2 |
|
cbvmptvw2.2 |
|- ( x = y -> A = B ) |
3 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
4 |
2
|
eleq2d |
|- ( x = y -> ( y e. A <-> y e. B ) ) |
5 |
3 4
|
bitrd |
|- ( x = y -> ( x e. A <-> y e. B ) ) |
6 |
1
|
eqeq2d |
|- ( x = y -> ( t = C <-> t = D ) ) |
7 |
5 6
|
anbi12d |
|- ( x = y -> ( ( x e. A /\ t = C ) <-> ( y e. B /\ t = D ) ) ) |
8 |
7
|
cbvopab1v |
|- { <. x , t >. | ( x e. A /\ t = C ) } = { <. y , t >. | ( y e. B /\ t = D ) } |
9 |
|
df-mpt |
|- ( x e. A |-> C ) = { <. x , t >. | ( x e. A /\ t = C ) } |
10 |
|
df-mpt |
|- ( y e. B |-> D ) = { <. y , t >. | ( y e. B /\ t = D ) } |
11 |
8 9 10
|
3eqtr4i |
|- ( x e. A |-> C ) = ( y e. B |-> D ) |