Metamath Proof Explorer


Theorem cbvmptvw2

Description: Change bound variable and domain in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmptvw2.1
|- ( x = y -> C = D )
cbvmptvw2.2
|- ( x = y -> A = B )
Assertion cbvmptvw2
|- ( x e. A |-> C ) = ( y e. B |-> D )

Proof

Step Hyp Ref Expression
1 cbvmptvw2.1
 |-  ( x = y -> C = D )
2 cbvmptvw2.2
 |-  ( x = y -> A = B )
3 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
4 2 eleq2d
 |-  ( x = y -> ( y e. A <-> y e. B ) )
5 3 4 bitrd
 |-  ( x = y -> ( x e. A <-> y e. B ) )
6 1 eqeq2d
 |-  ( x = y -> ( t = C <-> t = D ) )
7 5 6 anbi12d
 |-  ( x = y -> ( ( x e. A /\ t = C ) <-> ( y e. B /\ t = D ) ) )
8 7 cbvopab1v
 |-  { <. x , t >. | ( x e. A /\ t = C ) } = { <. y , t >. | ( y e. B /\ t = D ) }
9 df-mpt
 |-  ( x e. A |-> C ) = { <. x , t >. | ( x e. A /\ t = C ) }
10 df-mpt
 |-  ( y e. B |-> D ) = { <. y , t >. | ( y e. B /\ t = D ) }
11 8 9 10 3eqtr4i
 |-  ( x e. A |-> C ) = ( y e. B |-> D )