Description: Change bound variable and domain in a disjoint collection, using implicit substitution. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvdisjvw2.1 | |- ( x = y -> C = D ) |
|
cbvdisjvw2.2 | |- ( x = y -> A = B ) |
||
Assertion | cbvdisjvw2 | |- ( Disj_ x e. A C <-> Disj_ y e. B D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvdisjvw2.1 | |- ( x = y -> C = D ) |
|
2 | cbvdisjvw2.2 | |- ( x = y -> A = B ) |
|
3 | 1 | eleq2d | |- ( x = y -> ( t e. C <-> t e. D ) ) |
4 | 2 3 | cbvrmovw2 | |- ( E* x e. A t e. C <-> E* y e. B t e. D ) |
5 | 4 | albii | |- ( A. t E* x e. A t e. C <-> A. t E* y e. B t e. D ) |
6 | df-disj | |- ( Disj_ x e. A C <-> A. t E* x e. A t e. C ) |
|
7 | df-disj | |- ( Disj_ y e. B D <-> A. t E* y e. B t e. D ) |
|
8 | 5 6 7 | 3bitr4i | |- ( Disj_ x e. A C <-> Disj_ y e. B D ) |