Metamath Proof Explorer


Theorem cbvdisjvw2

Description: Change bound variable and domain in a disjoint collection, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvdisjvw2.1
|- ( x = y -> C = D )
cbvdisjvw2.2
|- ( x = y -> A = B )
Assertion cbvdisjvw2
|- ( Disj_ x e. A C <-> Disj_ y e. B D )

Proof

Step Hyp Ref Expression
1 cbvdisjvw2.1
 |-  ( x = y -> C = D )
2 cbvdisjvw2.2
 |-  ( x = y -> A = B )
3 1 eleq2d
 |-  ( x = y -> ( t e. C <-> t e. D ) )
4 2 3 cbvrmovw2
 |-  ( E* x e. A t e. C <-> E* y e. B t e. D )
5 4 albii
 |-  ( A. t E* x e. A t e. C <-> A. t E* y e. B t e. D )
6 df-disj
 |-  ( Disj_ x e. A C <-> A. t E* x e. A t e. C )
7 df-disj
 |-  ( Disj_ y e. B D <-> A. t E* y e. B t e. D )
8 5 6 7 3bitr4i
 |-  ( Disj_ x e. A C <-> Disj_ y e. B D )