Metamath Proof Explorer


Theorem cbvdisjvw2

Description: Change bound variable and domain in a disjoint collection, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvdisjvw2.1 x = y C = D
cbvdisjvw2.2 x = y A = B
Assertion cbvdisjvw2 Disj x A C Disj y B D

Proof

Step Hyp Ref Expression
1 cbvdisjvw2.1 x = y C = D
2 cbvdisjvw2.2 x = y A = B
3 1 eleq2d x = y t C t D
4 2 3 cbvrmovw2 * x A t C * y B t D
5 4 albii t * x A t C t * y B t D
6 df-disj Disj x A C t * x A t C
7 df-disj Disj y B D t * y B t D
8 5 6 7 3bitr4i Disj x A C Disj y B D