Description: Change bound variable and domain in an indexed intersection, using implicit substitution. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbviinvw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
cbviinvw2.2 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | ||
Assertion | cbviinvw2 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑦 ∈ 𝐵 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviinvw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
2 | cbviinvw2.2 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
3 | 1 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷 ) ) |
4 | 2 3 | cbvralvw2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 ) |
5 | 4 | abbii | ⊢ { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } = { 𝑡 ∣ ∀ 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 } |
6 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } | |
7 | df-iin | ⊢ ∩ 𝑦 ∈ 𝐵 𝐷 = { 𝑡 ∣ ∀ 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 } | |
8 | 5 6 7 | 3eqtr4i | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑦 ∈ 𝐵 𝐷 |