Metamath Proof Explorer


Theorem cbviinvw2

Description: Change bound variable and domain in an indexed intersection, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviinvw2.1 ( 𝑥 = 𝑦𝐶 = 𝐷 )
cbviinvw2.2 ( 𝑥 = 𝑦𝐴 = 𝐵 )
Assertion cbviinvw2 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷

Proof

Step Hyp Ref Expression
1 cbviinvw2.1 ( 𝑥 = 𝑦𝐶 = 𝐷 )
2 cbviinvw2.2 ( 𝑥 = 𝑦𝐴 = 𝐵 )
3 1 eleq2d ( 𝑥 = 𝑦 → ( 𝑡𝐶𝑡𝐷 ) )
4 2 3 cbvralvw2 ( ∀ 𝑥𝐴 𝑡𝐶 ↔ ∀ 𝑦𝐵 𝑡𝐷 )
5 4 abbii { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 } = { 𝑡 ∣ ∀ 𝑦𝐵 𝑡𝐷 }
6 df-iin 𝑥𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 }
7 df-iin 𝑦𝐵 𝐷 = { 𝑡 ∣ ∀ 𝑦𝐵 𝑡𝐷 }
8 5 6 7 3eqtr4i 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷