Metamath Proof Explorer


Theorem cbvralvw2

Description: Change bound variable and domain in the restricted universal quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvralvw2.1 ( 𝑥 = 𝑦𝐴 = 𝐵 )
cbvralvw2.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvralvw2 ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvralvw2.1 ( 𝑥 = 𝑦𝐴 = 𝐵 )
2 cbvralvw2.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
4 1 eleq2d ( 𝑥 = 𝑦 → ( 𝑦𝐴𝑦𝐵 ) )
5 3 4 bitrd ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐵 ) )
6 5 2 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐵𝜓 ) ) )
7 6 cbvalvw ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑦 ( 𝑦𝐵𝜓 ) )
8 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
9 df-ral ( ∀ 𝑦𝐵 𝜓 ↔ ∀ 𝑦 ( 𝑦𝐵𝜓 ) )
10 7 8 9 3bitr4i ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐵 𝜓 )