Description: Change bound variable and domain in the restricted universal quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvralvw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| cbvralvw2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvralvw2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralvw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 2 | cbvralvw2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 4 | 1 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 5 | 3 4 | bitrd | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 6 | 5 2 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 → 𝜓 ) ) ) |
| 7 | 6 | cbvalvw | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) |
| 8 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 9 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) |