Metamath Proof Explorer


Theorem cbvixpvw2

Description: Change bound variable and domain in an indexed Cartesian product, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvixpvw2.1 x = y C = D
cbvixpvw2.2 x = y A = B
Assertion cbvixpvw2 x A C = y B D

Proof

Step Hyp Ref Expression
1 cbvixpvw2.1 x = y C = D
2 cbvixpvw2.2 x = y A = B
3 id x = y x = y
4 3 2 eleq12d x = y x A y B
5 4 cbvabv x | x A = y | y B
6 5 fneq2i t Fn x | x A t Fn y | y B
7 fveq2 x = y t x = t y
8 7 1 eleq12d x = y t x C t y D
9 2 8 cbvralvw2 x A t x C y B t y D
10 6 9 anbi12i t Fn x | x A x A t x C t Fn y | y B y B t y D
11 10 abbii t | t Fn x | x A x A t x C = t | t Fn y | y B y B t y D
12 df-ixp x A C = t | t Fn x | x A x A t x C
13 df-ixp y B D = t | t Fn y | y B y B t y D
14 11 12 13 3eqtr4i x A C = y B D