Metamath Proof Explorer


Theorem cbvixpvw2

Description: Change bound variable and domain in an indexed Cartesian product, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvixpvw2.1 ( 𝑥 = 𝑦𝐶 = 𝐷 )
cbvixpvw2.2 ( 𝑥 = 𝑦𝐴 = 𝐵 )
Assertion cbvixpvw2 X 𝑥𝐴 𝐶 = X 𝑦𝐵 𝐷

Proof

Step Hyp Ref Expression
1 cbvixpvw2.1 ( 𝑥 = 𝑦𝐶 = 𝐷 )
2 cbvixpvw2.2 ( 𝑥 = 𝑦𝐴 = 𝐵 )
3 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
4 3 2 eleq12d ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐵 ) )
5 4 cbvabv { 𝑥𝑥𝐴 } = { 𝑦𝑦𝐵 }
6 5 fneq2i ( 𝑡 Fn { 𝑥𝑥𝐴 } ↔ 𝑡 Fn { 𝑦𝑦𝐵 } )
7 fveq2 ( 𝑥 = 𝑦 → ( 𝑡𝑥 ) = ( 𝑡𝑦 ) )
8 7 1 eleq12d ( 𝑥 = 𝑦 → ( ( 𝑡𝑥 ) ∈ 𝐶 ↔ ( 𝑡𝑦 ) ∈ 𝐷 ) )
9 2 8 cbvralvw2 ( ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ↔ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 )
10 6 9 anbi12i ( ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) ↔ ( 𝑡 Fn { 𝑦𝑦𝐵 } ∧ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 ) )
11 10 abbii { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) } = { 𝑡 ∣ ( 𝑡 Fn { 𝑦𝑦𝐵 } ∧ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 ) }
12 df-ixp X 𝑥𝐴 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) }
13 df-ixp X 𝑦𝐵 𝐷 = { 𝑡 ∣ ( 𝑡 Fn { 𝑦𝑦𝐵 } ∧ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 ) }
14 11 12 13 3eqtr4i X 𝑥𝐴 𝐶 = X 𝑦𝐵 𝐷