Step |
Hyp |
Ref |
Expression |
1 |
|
cbvixpvw2.1 |
⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) |
2 |
|
cbvixpvw2.2 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
3 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
4 |
3 2
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
5 |
4
|
cbvabv |
⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑦 ∣ 𝑦 ∈ 𝐵 } |
6 |
5
|
fneq2i |
⊢ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐵 } ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑡 ‘ 𝑥 ) = ( 𝑡 ‘ 𝑦 ) ) |
8 |
7 1
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝑡 ‘ 𝑦 ) ∈ 𝐷 ) ) |
9 |
2 8
|
cbvralvw2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑡 ‘ 𝑦 ) ∈ 𝐷 ) |
10 |
6 9
|
anbi12i |
⊢ ( ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑡 ‘ 𝑦 ) ∈ 𝐷 ) ) |
11 |
10
|
abbii |
⊢ { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) } = { 𝑡 ∣ ( 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑡 ‘ 𝑦 ) ∈ 𝐷 ) } |
12 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) } |
13 |
|
df-ixp |
⊢ X 𝑦 ∈ 𝐵 𝐷 = { 𝑡 ∣ ( 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑡 ‘ 𝑦 ) ∈ 𝐷 ) } |
14 |
11 12 13
|
3eqtr4i |
⊢ X 𝑥 ∈ 𝐴 𝐶 = X 𝑦 ∈ 𝐵 𝐷 |