Metamath Proof Explorer


Theorem cbvmpo

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013)

Ref Expression
Hypotheses cbvmpo.1 _zC
cbvmpo.2 _wC
cbvmpo.3 _xD
cbvmpo.4 _yD
cbvmpo.5 x=zy=wC=D
Assertion cbvmpo xA,yBC=zA,wBD

Proof

Step Hyp Ref Expression
1 cbvmpo.1 _zC
2 cbvmpo.2 _wC
3 cbvmpo.3 _xD
4 cbvmpo.4 _yD
5 cbvmpo.5 x=zy=wC=D
6 nfcv _zB
7 nfcv _xB
8 eqidd x=zB=B
9 6 7 1 2 3 4 8 5 cbvmpox xA,yBC=zA,wBD