Metamath Proof Explorer


Theorem cbvopab

Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003)

Ref Expression
Hypotheses cbvopab.1 zφ
cbvopab.2 wφ
cbvopab.3 xψ
cbvopab.4 yψ
cbvopab.5 x=zy=wφψ
Assertion cbvopab xy|φ=zw|ψ

Proof

Step Hyp Ref Expression
1 cbvopab.1 zφ
2 cbvopab.2 wφ
3 cbvopab.3 xψ
4 cbvopab.4 yψ
5 cbvopab.5 x=zy=wφψ
6 nfv zv=xy
7 6 1 nfan zv=xyφ
8 nfv wv=xy
9 8 2 nfan wv=xyφ
10 nfv xv=zw
11 10 3 nfan xv=zwψ
12 nfv yv=zw
13 12 4 nfan yv=zwψ
14 opeq12 x=zy=wxy=zw
15 14 eqeq2d x=zy=wv=xyv=zw
16 15 5 anbi12d x=zy=wv=xyφv=zwψ
17 7 9 11 13 16 cbvex2v xyv=xyφzwv=zwψ
18 17 abbii v|xyv=xyφ=v|zwv=zwψ
19 df-opab xy|φ=v|xyv=xyφ
20 df-opab zw|ψ=v|zwv=zwψ
21 18 19 20 3eqtr4i xy|φ=zw|ψ