Metamath Proof Explorer


Theorem cbvraldva

Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Hypothesis cbvraldva.1 φx=yψχ
Assertion cbvraldva φxAψyAχ

Proof

Step Hyp Ref Expression
1 cbvraldva.1 φx=yψχ
2 1 ancoms x=yφψχ
3 2 pm5.74da x=yφψφχ
4 3 cbvralvw xAφψyAφχ
5 r19.21v xAφψφxAψ
6 r19.21v yAφχφyAχ
7 4 5 6 3bitr3i φxAψφyAχ
8 7 pm5.74ri φxAψyAχ