Metamath Proof Explorer


Theorem cbvrexdva

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Hypothesis cbvraldva.1 φx=yψχ
Assertion cbvrexdva φxAψyAχ

Proof

Step Hyp Ref Expression
1 cbvraldva.1 φx=yψχ
2 1 notbid φx=y¬ψ¬χ
3 2 cbvraldva φxA¬ψyA¬χ
4 ralnex xA¬ψ¬xAψ
5 ralnex yA¬χ¬yAχ
6 3 4 5 3bitr3g φ¬xAψ¬yAχ
7 6 con4bid φxAψyAχ