Metamath Proof Explorer


Theorem cbvrexdva

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Hypothesis cbvraldva.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvrexdva
|- ( ph -> ( E. x e. A ps <-> E. y e. A ch ) )

Proof

Step Hyp Ref Expression
1 cbvraldva.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 notbid
 |-  ( ( ph /\ x = y ) -> ( -. ps <-> -. ch ) )
3 2 cbvraldva
 |-  ( ph -> ( A. x e. A -. ps <-> A. y e. A -. ch ) )
4 ralnex
 |-  ( A. x e. A -. ps <-> -. E. x e. A ps )
5 ralnex
 |-  ( A. y e. A -. ch <-> -. E. y e. A ch )
6 3 4 5 3bitr3g
 |-  ( ph -> ( -. E. x e. A ps <-> -. E. y e. A ch ) )
7 6 con4bid
 |-  ( ph -> ( E. x e. A ps <-> E. y e. A ch ) )