Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvraldva.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
Assertion | cbvrexdva | |- ( ph -> ( E. x e. A ps <-> E. y e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvraldva.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
2 | 1 | notbid | |- ( ( ph /\ x = y ) -> ( -. ps <-> -. ch ) ) |
3 | 2 | cbvraldva | |- ( ph -> ( A. x e. A -. ps <-> A. y e. A -. ch ) ) |
4 | ralnex | |- ( A. x e. A -. ps <-> -. E. x e. A ps ) |
|
5 | ralnex | |- ( A. y e. A -. ch <-> -. E. y e. A ch ) |
|
6 | 3 4 5 | 3bitr3g | |- ( ph -> ( -. E. x e. A ps <-> -. E. y e. A ch ) ) |
7 | 6 | con4bid | |- ( ph -> ( E. x e. A ps <-> E. y e. A ch ) ) |